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ABSTRACT

This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc

motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are

compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating

conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and

insensitive to load disturbances.
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1. Introduction

Recent developments in microprocessors, magnetic
materials, semiconductor technology, and mechatronics
provide a wide scope of applications of high—performance
electric motors in various industrial processes. In
high-performance motor drive applications involving
mechatronics, such as robotics, rolling mills, machine
tools, etc., accurate speed and position control is of critical
importance. Although relatively expensive, dc motors are
still widely used in such applications because of their
reliability and ease of control. This is due to the decoupled
nature of the field and armature mmf’s of the two types of
commonly used dc motors, separately excited and PM dc
motors. The latter does not require an extra dc supply for

the field, as the permanent magnet itself acts as the source
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of the flux. The PM dc motor is, thus, compact in size,
robust, and highly efficient. Due to their high initial torque
and efficiency, PM dc motors have increasing application
areas, especially in load systems with power ratings
ranging from a few watts to about 100 KW.

In high—performance drive applications, the control of a
PM dc motor demands special attention. It has to have
faster response, quicker recovery of speed from load
insensitivity variations,

impact and to  parameter

Conventional designs of robust control are often
associated with constant gain controllers, such as PI or
integral  or

derivative), which stabilize a class of linear systems over a

P1D(proportional proportional . integral
small range of system parameters. Moreover, these types
of controller-based systems require accurate mathematical
models to describe the system dynamics''). It is often quite
difficult to obtain an accurate system model. Even if the
model of the drive under control is obtained, unknown
conditions, such as saturation, disturbances, parameter
variations, noise, etc. are unavoidable and cannot be
modeled accurately. Furthermore, the load to the motor 1s
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uncertain and shows nonlinear mechanical characteristics,
which may cause the drive system to become unstable. In
recent years, many adaptive control techniques, such as
model reference adaptive control(MRAC), sliding mode
control(SMC), wvariable structure control, and use of a
self-tuning regulator have become available to control
systems that are less stable. These conventional adaptive
control techniques are usually based on system model
parameters.

Most of the adaptive control techniques for nonlinear
systems are often associated with linearizing the model for
a specific operating time interval and applying linear
control theories. This introduces considerable errors
because of the linearization of the nonlinear model.
Real-time implementation is often difficult and sometimes
not feasible because of the use of a large number of
parameters in these adaptive schemes *.

Recently, artificial neural networks(ANN) have proved
extremely useful in pattern recognition, image processing
and speech recognition. These networks are also receiving
wide attention in control applications. When used as a
motor controller in real time, an ANN can tune itself
through on-line training and instruct the motor drive
system to perform as desired.. The use of an ANN in high
performance motor drives can make the systems robust,

efficient, and immune to undesired operating conditions *'.

A novel a novel speed control strategy of a PM dc motor
has been proposed 4 which incorporates an on-line
weights and biases updating feature of the ANN. The
ANN architecture was based on the inverse dynamic
model of the nonlinear drive system. To enhance
robustness, which is an important criterion of a
high—performance drive, a unique feature of adaptive
learning rates was also introduced. Stability over a wide
operating range was obtained using an ANN structure with
a local feedback provision *. A real-time implementation
of ANN-based speed control of a dc motor drive has also
been introduced ©*). Reference speeds have been arbitrarily
fed to the ANN as inputs without using a stable reference
model. Although the drive system stability has been
improved by providing a feedback loop, the evaluated
system responses have considerable amounts of speed
overshoots under some operating conditions. The learning

rate was fixed during the on-line weights and biases
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updating. So, there was a need to design an efficient and
stable on-line self-tuning ANN-based dc motor drive
system with an adaptive learning rate feature'’.

During the last decade, fuzzy logic controllers (FLC)
have attracted great attention from both the academic and
industrial communities. Recently, the use of FLC’s has
been suggested as an alternative approach to conventional
control techniques for complex control systems such as
nonlinear or time delayed system. That is, the design of a
FLC does not require a mathematical description of the
control system and a FLC can compensate for the
environmental variation during operation. However, we
cannot obtain a good control performance if the
membership functions. fuzzy rules and scaling factors are
incorrect. Recently, membership functions, fuzzy rules
and scaling factors have been determined by evolutionary
computations, which rely on a probabilistic search method
based on genetics and evolutionary theory.

It is known that the torque levels of loads such as rollers,
carrying bands, crains, lifts, and conveyors vary
continuously. Therefore, the torque—speed characteristics
of these types of loads also vary depending on the
variations in torque. However, in many systems, the speed
is required to be constant. The speed and load estimation
are carried out by measuring voltage and current instead of
using speed and torque sensors, which is detailed in '’
The current, voltage and speed data obtained previously
for different load levels including the no-load case, is
stored in a look-up table for fuzzy control. It then is used
to find the type and operating point of an unknown
constant type load. This operating point gives information
about the current, voltage and speed levels of the PM dc
motor. T Then applying this data about the speed and
voltage, the motor is operated at desired speed and voltage
level by using fuzzy logic control rules.

In this paper, the performance of a PM dc motor is
studied under different operating conditions using a
Neural Network controller, a Fuzzy logic controller and a
Single Neuro controller. A comparison between the three
control algorithms is carried out and discussed. The
permanent magnet dc motor drive system dynamics are
described in section 2. In section 3, the fuzzy logic
controller is described. The structure of the Neural

Network controller is introduced in section 4. The single
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neuro controller 1s presented in section 5. The simulation
results and comparison between the three control methods
are shown in section 6.

2. PM dc motor Drive System dynamics

The dynamics of the PM dc motor drive system can be
described by the following equations:

v.()=R, i (t)+L, md—r[rh e, (t) (D
Et)=K, o, (1) (2)
TL*["J: Ki‘fu ['F) [3}

dar(t) (4)

TE,{J"}= JT+ Bﬂ?,-[f]"F Tfr(!'}-i- Tllf

where: v (1) Ep(t)andi,(r) are the time-varying motor

terminal wvoltage, back EMF, and armature current,
respectively, @, (t) is the motor speed, R, and L, are

the armature resistance and inductance, K, and K, are

the motor back emf and torque constants respectively,
T {r},TL (¢)and T oare the developed torque, load

torque, and frictional torque respectively, and J and B are
the inertia and viscous constants respectively. The motor
parameters are given in Appendix A.

Since the motor field is permanent, the armature voltage
is the only parameter which can be varied to control the

drive system.
3. Fuzzy logic control of the PM dc motor

Recently, fuzzy logic control(FLC) has become a
popular research area in the control engineering. This is
due to its ability to be used with systems that are complex
or when it is difficult to develop a mathematical model.
Fuzzy logic control has found a wide range of application
areas such as photovoltaic energy conversion, home
heating systems, process control, system identification,
expert systems, robotics, pattern recognition and
man-machine interface systems. FLC can be regarded as a
set of heuristic decision rules that include the experience
of a human operator.

The main advantages of FLC are;
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|- No mathematical formulation of the system is
needed.

2- Linguistic variables and approximate reasoning are
used to describe inexact objects and achieve multi
objective control.

The fuzzy controller relates significant and observable
variables to the control actions, and consists of a fuzzy
relationship or algorithm. The input error time sequences
such as error and change in error are converted to fuzzy
variables. These wvariables are evaluated by the control
rules using the compositional rule of inference, and the
approximately computed control action is then
reconverted to the crisp value required to regulate the
process. So the essential elements in designing fuzzy
controllers include:

|- Defining input and output variables.

2- Converting the input variables to fuzzy sets.

3- Determining the fuzzy control rules.

4- Reconverting the fuzzy control actions into crisp
control actions.

Fig. 1 shows a block diagram for a fuzzy logic control
system. The error signal e(k) and its rate of change de(k)
are selected as inputs to the fuzzy logic controller. These
are normalized into a common universe of discourse and
their linguistic fuzzy subsets along with their membership
grades are then defined using the functions. The fuzzy
membership grades of the control input change in the
fuzzy subsets are obtained based on the rules given by
Table 1. Then this normalized value of control input

change is reconverted back to its actual level.

Rule Base
Fuzzy
Values
elk) e L
—  fuzzification P Evaluation
de(k) — p{ of Control
Rules
Crisp
Values
Control :
Action Vaik-1)
¥y v l Va(k)
defuzzification
—»()-p
Crisp
Values

Fig. | FLC Block diagram



4 Journal of Power Electronics, Vol. 5, No. 1, January 2005

Table 1 Fuzzy Control Rule Decision Table

de(k) |[NB |[NM |NS |ZE |(PS |(PM (PB
e(k)

NB EB: |“BEB: {|-PB- (| PE | PN RS ZE

NM FB |PB. |FB |PM |P5 | ZE [NS

NS PB |PB |PM |PS ZE | NS | NM

ZE PB |PM |PM |ZE | NS |NM | NB

PS PM |PS |ZE |NS |NM |NB | NB

PM PS |ZE |NS |NM |NBE |NB | NB

B ZE |NS |NM |NB |NB |NB | NB

4. Neural Network Controller

It is well known that ANN needs to be trained. High
convergence accuracy and high convergence rates are
desirable for ANN’s training. This becomes even more
serious for dynamic modeling of an ANN. As in ANN’s
dynamic modeling, errors in the outputs from each
sample’s training will be fed back to the ANN as inputs
for the next sample’s training. As a result, errors in each
training will not only affect the training result of the
current sample’s training but also affect the following
sample’s training. Accumulation and propagation of the

errors will greatly degenerate the performance of the ANN.

Training of an ANN is basically a process of finding the
global minimum of a predefined objective function. The
most popular training algorithm 1s the back—error
propagation (BP) algorithm. Many efforts have been made
to improve the convergence properties. Some even
suggested using the second—order partial derivatives of the
objective function. However, the computation needed
would be considerably increased. Fortunately, an
algorithm has been developed that can greatly improve the
performance of the conventional BP algorithm by simply
introducing two variables to modify the step sizes of a
conventional BP *!. This improved BP algorithm offers
high convergence rate and accuracy.

There are two learning models for an ANN as a
neuro—controller, off-line training and on-line training.
In the off-line training method, the learning process
involves the minimization of the overall error between the
desired ANN output and the actual ANN output. After the
learning process is completed, the connection weights

between the neurons are fixed and the ANN is used as a
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controller. This method required some means of
determining the desired neuro—controller output, such as a
reference controller. Also, tremendous amounts of training
data covering the entire possible range of system operation
must be used in training. Conversely, by using the
alternative on-line approach, the NN learns during
feed-forward control. This approach does not require a
reference controller or large amounts of training data. The
BP training algorithm is an iterative gradient algorithm. It
is normally designed to minimize the mean square error
between the actual output of an ANN and the desired
output. It uses a recursive algorithm starting at the output
units and working back through the hidden layer to adjust

the neural weights according to the following equations:

Sf!ﬂ':EHllﬂ G.I'-"r. +E} {5}
Opj=FI(S ;) (6)

where: S, : input of neuron j for pattern p,

O,; :output of neuron j for pattern p

w

@, : neuron bias, W, ! weight from unit 1 to unit |,

F [S FJ'): activation function

wi(e+1)=w; (t)+ A w;(¢) (7)
Aw;=£08,0, (8)
8, =-0E,180, F'\S,) 9)
where  F'(S,): differentiation of FI(S )
E, : error function, & :learning rate
5}'!!' :  error term for unit j
The error function normally used in the standard BP
algorithm 1s :
£, =050 -0, ) 10

where { is the target output of the neuron j in the ANN.

When neuron j is in an output layer,

-0E,/jO,; =ty —0,) (11)

and when j 15 in a hidden layer
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Fig. 2 represents the multi-layer neural network
controller for the PM dc motor. The inputs of the forward
neural network are the reference speed, the actual speed,
the previous values of the actual speed, the neural network
output and the previous value of the neural network

output.
Va(k-1)
N '
nr
» ANN f .[ Drive [ PMDCM
n(k-1) Va(k)
n(k

Fig. 2 Block diagram of Neural Network controller
5. Single-Neuron Neuro-Controller

This section presents the design of the proposed
single-neuron  neuro-controller(SNNC) as a speed
controller for the PM dc motor. The SNNC consists of
only one weight and one neuron with a linear hard limit
activation function as shown in Fig.3.

1
>
Fig. 3  Single neuron configuration
The SNNC output can be derived as:
u(t)y=W(t) (13)
W(O=W(t-D+n*WCT (14)
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Lhn

where “WCT" is the neuron Weight Correction Term.

n : Learning rate

W (t) :neuron weight

u(t) : neuron output

The back propagation training algorithm is used to train
the SNNC. The weight correction term is given by *':

(15)

WCT = [{r{r] —e(t) -k d[j"" }1

Where:
¢(t): the controlled variable
r(t): the controller input (reference input)

Based on the back propagation algorithm, the weight
change of the SNNC is given by:

AW =n*WCT (16)

Based on equations (15) and (16), the SNNC weight
update depends on two parameters named k and 7. The

two parameters are selected by trial and error based on the
author experiences. In future work, it is proposed that the
two parameters be obtained analytically. The SNNC speed

controller has m: (reference speed) and @, (a ctual

speed) as the controller input and the controlled variable
respectively. The WCT of the SNNC is given by the
following equation:

WCT = @, — o, —kmr—fm, L

dt

The controller output is the armature voltage.

The selected SNNC controller parameters are as
follows: n=.02 and k=.02

6. Simulation Results and Discussions

Several tests were performed in this study to evaluate
the performances of both the FLC, ANN controller and
simple neuro controller based PM dc motor drives. The
speed and current responses under various operating
conditions, such as changes in reference speed and
changes 1in load, were observed. Some of the sample
results are documented in the following section. Fig.4
represents the block diagram of the general control
system.
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Control e . . |
Signal
Control , : Fuzzy control
Uni | D/A —»  Dirive 300 - |
nit =
g
Error Actual E 200 4 d
Signal Signal T
ﬁa}[} ‘——?‘ System §' 100 |
e - - - T

Reference Signal
Time{sec)

Fig. 4 Block diagram of general controller : : - g ;

Fuzzy control |

Simulation was performed to obtain the speed responses
for varying reference speeds with a constant load (full load
100%). Fig. 5 shows the speed and corresponding
armature current responses using the fuzzy logic ;
controller. Fig. 6 presents the responses of the ANN- 24F -
controller under the same operating conditions. Fig. 7 ‘
shows the responses of the simple neuro controller under A i e £ MR (R 2
the same operating conditions. It is observed from Figs. 3, Time(sec)

6 and 7 that the performances of the simple neuro-based Fig. 5 Fuzzy logic controller response to the change in
PM dc motor drive system are much better than those of reference speed

the fuzzy or the ANN controller-based systems. The FLC

and ANN controller-based drive system have the problem S : HITNE , )
of over-shooting around 50 rad/sec. It is reported in ©' that . [ Neursi Network |
the response of the ANN controller can be improved by | \/\’

o
1

.
i
1

current(amp)

:

using an adaptive learning rate.

2

The speed response of the simple neuro—based system 1s
more robust against the step change in reference speed.
The current response to the step change of speed is shown
in Fig. 5, Fig. 6 and Fig. 7. It is observed from Fig. 5, Fig.
6 and Fig. 7 that the current control performances of the 00 oS 10 1.5 20
simple neuro—based PM dc motor drive system are much o)
better than those of the fuzzy or the Neural Network

spead{rad/sec)
g

controller based systems. The FLC and NN controller— S " Neural Network | 1
based drive systems have the problem of oscillations
represented by positive and negative current which causes
damage to the motor and increases the settling time when

current(amp)

there is a change in reference speed.
Fig. 8 shows the speed and current responses of the

fuzzy logic based system for a step change of load at
constant speed(300 rad/sec). The motor was running at full
load and after some time, a step down change of load
occurs (from 100% to 25%). Fig. 9 shows responses of the

0.0 0.5 1.0 1.5 2.0
Time(sec)

Fig. 6 ANN-controller response to the change in reference
speed
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Fig. 7 Simple neuro controller response to the change in
reference speed

ANN ccontroller-based system under this operating
condition. The ANN adjusts its weights and biases to this
changing condition of sudden load impact and provides
appropriate control voltage, so that the drive system
responds according to the reference speed. Fig. 10 shows
responses of the simple neuro-based system under this
operating condition. From Fig.8, 9 and 10 it can be shown
that the performance of the simple neuro-based system is
much better than that of the fuzzy or Neural Network
systems without an adaptive learning rate.

The motor speed and current responses at the step down
change of load torque are shown in figs. 8, 9 and 10.
These figures show the simple neuro controller is much
better because the transient time is very small at the step
down change of load torque. Also table 2 summarizes the
simulation results.

Figs. 11&12 show comparisons between fuzzy logic
control and simple neuro-control. Because the neural
network needs the adaptive learning rate with the
controller and the simple neuro controller can be
considered to be a modification of a neural network, we
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Fig. 8 Fuzzy logic controller response to the step down change

400 T r T r

L

g

speed(rad/sec)

:

ﬂ T T ] T T T
0.0 0.8 1.0 1.6 2.0

Time(sec)

Neural Network |

current{amp)

L) I ¥ L]
0.0 0.5 1.0 1.5 2.0
Time(sec)

Fig.9 ANN-controller response to the step down change
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Fig. 10 Simple neuro controller response to the step down

change
Table 2 summary results
Item Neural Fuzzy Simple
Network | Controller | Neuro
Over high lower Lowest
shooting
Transient | lowest lower high
current
Settling long shorter shortest
time
Oscillation | high lower lowest

compare only the results between the fuzzy logic control

and simple neuro control. Fig. 11 represents the speed and

current responses at a step up(a) change in reference speed
(from 200 rad/sec to 350 rad/sec) and a step down(b)
change in reference speed (from 300 rad/sec to 100
rad/sec) at 100% load. Fig. 12 represents the speed and

current responses to a step up(a) change of load torque
(from 0% to 50%) and a step-down(b) change of load
torque (from 100% to 25%) when the reference speed is

300 rad/sec.
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speed|rad/sec)

current{amp)

Fig. 11

Comparison of responses to a step-up & step-down

(b) step-down in reference speed
from 300 rad/sec to 100 rad/sec

changes in reference speed at full load
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(b) step-down of load torque from 100% to 25%

12 Comparison of responses to a step-up & step-down
load torque at 300 rad/sec
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7. Conclusions

This paper presents an application of simple neuro
control, Neural Network control and fuzzy logic control to
a permanent magnet dc motor. The performance
characteristics of all methods were compared. The
comparative results indicate that the performance of the
Simple Neuro control is clearly superior in the case of
speed change (up or down) and load disturbances. When
using fuzzy logic control to improve the system stability,
one needs to decrease the overshoot ratio and settling time
by adjusting either the rules, the input and output scaling
factors, or some other parameters of the fuzzy controller.
Also, the use of a Neural Network must incorporate the
adaptive learning rate which changes according to the
operating point in the proposed system, thus reducing the
possibilities transient

conditions.

of overshooting during the

The proposed simple neuro-based speed control system
of the PM dc motor is found to be robust, efficient, and

easy to implement.

Appendix

Motor data:
Ra=2.81,

B=.002 N.m/K r/min,
Kit=.0438 N.m/A,
La=1.17 mH,
J=.00002288 kg.m’
Tf=.0212 N.m,

Ke= 0439 V.s/rad
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